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Abstract 15 

As species diverge, a wide range of evolutionary processes lead to changes in protein-protein 16 
interaction networks and metabolic networks. The rate at which molecular networks evolve is 17 
an important question in evolutionary biology. Previous empirical work has focused on 18 
interactomes from model organisms to calculate rewiring rates, but this is limited by the 19 
relatively small number of species and sparse nature of network data across species. We 20 
present a proxy for variation in network topology: variation in drug-drug interactions (DDIs), 21 
obtained by studying drug combinations (DCs) across taxa. Here, we propose the rate at which 22 
DDIs change across species as an estimate of the rate at which the underlying molecular 23 
network changes as species diverge. We computed the evolutionary rates of DDIs using 24 
previously published data from a high throughput study in gram-negative bacteria. Using 25 
phylogenetic comparative methods, we found that DDIs diverge rapidly over short evolutionary 26 
time periods, but that divergence saturates over longer time periods. In parallel, we mapped 27 
drugs with known targets in protein-protein interaction and co-functional networks. We found 28 
that the targets of synergistic DDIs are closer in these networks than other types of DCs and 29 
that synergistic interactions have a higher evolutionary rate, meaning that nodes that are 30 
closer evolve at a faster rate. Future studies of network evolution may use DC data to gain 31 
larger-scale perspectives on the details of network evolution within and between species. 32 
 33 

Introduction 34 

Molecular networks are models of real molecular interactions in the cell. These networks are built 35 
by collecting biochemical and genetic interaction data, an approach that has improved in the last 36 
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decades with the advent of modern high-throughput methods. However, there are still many 1 
limitations to the gathering and analysis of molecular networks, specifically for studying network 2 
variation across and within species. This is because many molecular networks have poor quality or 3 
are sparse and incomplete and because the number of organisms for which network data is available 4 
is still very limited (Cusick et al. 2005; Jin et al. 2013; Ghadie et al. 2018). The major types of 5 
molecular networks that have been built represent protein interactions, metabolic processes, 6 
signaling, and gene regulation. 7 

Molecular networks evolve as nodes (e.g. proteins) and edges (e.g. molecular interactions) are added 8 
or lost. This can be the result of different processes, including those affecting genes and the 9 
interaction of their products, such as gene or motif duplication, loss, horizontal transfer, or whole 10 
genome duplication (Wagner 2003; Cork and Purugganan 2004; Bernhardsson et al. 2011; Koch et 11 
al. 2017), or a result of processes affecting quantitative properties, including non-synonymous 12 
substitutions in the protein nodes affecting their function (Jensen 1976; Ghadie et al. 2018). These 13 
mutations may affect the binding of ligands, protein domains, or DNA motifs (Koch et al. 2017), 14 
which in turn result in changes in their associated metabolic, signaling, or gene expression 15 
networks. The type of network also may affect the rewiring rates of nodes. For example, gene 16 
regulatory networks tend to rewire at faster rates than metabolic networks (Shou et al. 2011), 17 
suggesting that some network types are less constrained than others. 18 

The genetic and evolutionary events that remove old connections and generate new ones may be 19 
random with neutral consequences (Bernhardsson et al. 2011), may be genetically constrained 20 
(Wollenberg Valero 2020), or may affect fitness. We know that not all network motifs (i.e. recurrent 21 
patterns of connections with potential functional properties) are equally abundant in molecular 22 
networks, suggesting the action of natural selection (Milo et al. 2002; Picard et al. 2008). Natural 23 
selection may remove deleterious connections (Jordan et al. 2008) and favor advantageous ones 24 
(Laarits et al. 2016; Mehta et al. 2021), including balancing environmental robustness with network 25 
functions (Han et al. 2013; Chen and Ho 2014). While higher fitness solutions may include those 26 
with lower levels of modularity (Kashtan and Alon 2005), modularity itself may be driven by 27 
selection to reduce connection costs (Clune et al. 2013). Higher levels of protein connectivity have 28 
been correlated with lower substitution rates (Fraser et al. 2002), potentially due to strong 29 
purifying selection acting on the interfacial sites of interacting proteins (Zotenko et al. 2008). Each 30 
of the network types, discussed in aggregate above, may be subject to different evolutionary forces 31 
and patterns. 32 

Part of the key to understanding the forces acting on networks is a characterization of evolutionary 33 
rates of network change. Despite advances in studying the connections of individual nodes and 34 
network rewiring, the rate and patterns by which quantitative differences between networks 35 
accumulate as a function of species divergence remain relatively unexplored. Beltrao and Serrano 36 
(2007) estimated rewiring rates among eukaryotic proteins at ~10−5 interactions/protein pair/million 37 
years, found that network rewiring proceeds faster than sequence evolution, and that differences in 38 
rewiring rates between functional categories suggest the action of natural selection. One interesting 39 
question is whether network rewiring among a given pair of nodes is correlated with metrics of 40 
connectivity between those nodes, including minimum path length (the number of steps along the 41 
shortest path between nodes), K-edge connectivity (minimum number of edges that can be removed 42 
to disconnect two nodes), degree (number of edges connected to the node), and centrality. This is 43 
important information for understanding what aspects of network structure that we can quantitate 44 
are subject to evolutionary forces acting on variation. 45 
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In this study, we use drug-drug interaction (DDI) scores as a quantitative proxy measurement of 1 
inter-node connectivity, since it has been shown that DDIs are partially dependent on the 2 
underlying network topology between targets (Lehár et al. 2007; Yeh et al. 2009). Among drug 3 
combinations (DCs), DDIs occur when the effect of two or more drugs is significantly stronger or 4 
weaker than the additive expectation, respectively named synergies and antagonisms (Greco et al. 5 
1995). DDIs are used in the development of novel pharmacological treatments with higher 6 
efficiencies at lower doses and to reduce the evolution of drug resistance (Cowen and Steinbach 7 
2008). The reasons why a DDI occurs are varied, influenced by the functional relationships between 8 
the drug targets; this is an effect of factors such as the topology of the underlying network between 9 
drug targets and the essentiality of the metabolites affected by the drugs (Yeh et al. 2009). These 10 
relationships can either be direct (between the target genes themselves) or indirect (mediated 11 
through interactions with other genes). Synergies often occur when drugs act on parallel or 12 
redundant pathways that contribute to the same essential biological function or end product. This 13 
redundancy in pathways is susceptible to drug combinations which prevent any single pathway 14 
from fully compensating for the inhibition of others, thereby enhancing the overall effect (Lehár et 15 
al. 2007). In contrast, antagonistic interactions can arise (1) when drugs acting on the same 16 
pathway at different sites interfere with each other’s actions, (2) when drugs acting on the same 17 
pathway or process exert opposite effects, thus diminishing the overall effect, (3) when two drugs 18 
each result in complete loss of function of the same non-essential pathway or (4) if two drugs each 19 
effect different functions, but where the combined effect is equal to the most limiting of the two (Yeh 20 
et al. 2009). While both DDI types can be a result of either direct or indirect effects, experimental 21 
evidence suggests that, in general, most synergistic interactions are the result of drugs targeting 22 
the same cellular process, while antagonistic interactions are typically the result of drugs targeting 23 
different processes (Brochado et al. 2018). 24 

Only a few studies have explored interspecific variation of DDI scores (Spitzer et al. 2011; Robbins et 25 
al. 2015; Brochado et al. 2018; Davis et al. 2022), but they have demonstrated that DC experiments 26 
(used to obtain DDI scores) could be scalable in the number of species and strains. A high 27 
throughput study of DDIs in gram-negative bacteria has shown that synergies are more conserved 28 
across species than antagonisms and additive combinations (Brochado et al. 2018). 29 

How well does the evolution of DDI scores transmit the evolutionary patterns of their underlying 30 
molecular networks? This is an important question; assuming there is a reasonable correspondence, 31 
then our questions about DDI evolution mirror those about molecular networks: Does DDI score 32 
divergence accumulate linearly with divergence time, or follow some other function? Do DDIs 33 
diverge consistently with neutral processes acting on the underlying network structure? Or is there 34 
heterogeneity across the network, for example with differences accumulating slowly in constrained 35 
local neighborhoods, and faster between more distant connections? In other words, does the 36 
evolutionary rate of DDIs depend on the connectivity of the drug targets? 37 

Another way to parse this latter question is to divide up drug combinations by type. Do synergistic 38 
interactions evolve at a slower rate than other types of drug interactions, and do antagonistic 39 
interactions evolve at a faster rate? These differences in rates would be a result of synergistic 40 
interactions taking place in local neighborhoods of nodes, while antagonistic interactions act across 41 
distant network neighborhoods, which may evolve more slowly due to greater network redundancy 42 
between distant nodes. Indeed, if we were to map DCs to protein targets (when known), are the drug 43 
targets of synergistic drug interactions closer in the network than additive and antagonistic 44 
interactions? And, more generally, are more closely connected nodes subject to higher rates of 45 
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evolution than more distantly related nodes? These questions can be addressed by comparing rates 1 
of DDI score evolution with measures of inter-node connectivity. 2 

To address these questions, we used the most complete available dataset of DCs measured across 3 
species and strains (Brochado et al. 2018). We modeled these DCs under a phylogenetic comparative 4 
framework and applied a multivariate Brownian motion model to estimate the evolutionary rate of 5 
interaction scores for different clusters of DCs in six strains (three species) of gram-negative 6 
bacteria. We also mapped DCs to their putative protein targets to evaluate them in known 7 
molecular networks. We show that DDI scores can be used as an effective proxy to evaluate 8 
macroevolutionary patterns of network evolution. 9 

 10 

Results 11 

DDI scores diverge non-linearly 12 

We obtained drug-drug interaction (DDI) scores for 2655 pairwise combinations of 79 different 13 
compounds affecting six strains, two from each of the three gammaproteobacteria species: 14 
Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa. The DDI scores were measured 15 
and calculated by Brochado et al. (2018) using the Bliss independence model, which calculates the 16 
expected combined effect of two drugs as the product of the probabilities that each drug individually 17 
fails to produce its effect (Tallarida 2011; Foucquier and Guedj 2015). This expected outcome 18 
provides a baseline for detecting synergistic or antagonistic interactions, where the actual combined 19 
effect surpasses or falls short of the predicted effect, respectively. We performed hierarchical 20 
clustering (UPGMA) of the Euclidean distances among DDI scores from the six strains, revealing a 21 
'DDI score distance' tree (Fig. 1B). The DDI score distance is half of the cophenetic distance for each 22 
strain pair; i.e. the distance from either tip of the pair to the point in the tree where they first come 23 
together. 24 

We also estimated phylogenetic divergence times between the strains and species using calibrated 25 
phylogenetic analysis of highly conserved proteins (Fig. 1A). The 95% highest probability density of 26 
the most recent common ancestor (MRCA) of these three species is 1359-1527 million years ago 27 
(MYA), or 100-151 MYA for the two Enterobacteriaceae (E. coli and S. enterica). 28 

To test how DDI scores diverge as a function of species divergence, we regressed the DDI score 29 
distances between strains against their divergence times (time to MRCA in MYA). There is a 30 
positive correlation between DDI score distance and divergence time (Fig. 1E). This is a log-linear 31 
relationship (R2 =0.93, p-value=6.8×10-9; Sup. Fig. S1). Specifically, the initial stages of DDI score 32 
divergence is characterized by rapid changes that accumulate between closely related strains, the 33 
rate of divergence slows down when comparing more distant species, and it saturates among the 34 
most distantly related species. This pattern may be consistent with both neutral and selective forces 35 
acting on the molecular networks underlying DDIs (see Discussion). Indeed, a phylomorphospace 36 
plot of the first two axes of a principal components analysis of the DC data (Fig. 1F) does not reflect 37 
the branch lengths of the DDI distance tree (Fig. 1B), suggesting that DDI score variance is 38 
explained by more factors than just time. Here, the largest variance component seems to distinguish 39 
all three species from each other (PC1, 47%), while the second component (PC2, 21.5%) seems to 40 
distinguish between Salmonella and the other species (Fig. 1F). This highlights that while the 41 
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divergence time between Salmonella and Escherichia is small (Fig. 1A), the DDI score distance 1 
between these species is comparatively much larger, suggesting that after the divergence from their 2 
common ancestor, each lineage rapidly accumulated cellular and biochemical differences that are 3 
reflected in their differing DDI scores. 4 

In light of these observations and to further explore these possibilities, we sought to estimate the 5 
evolutionary rate of DDI score change for particular DCs. However, there is low power with only six 6 
tips to estimate rate shifts for any individual DC. To address this limitation, we used t -SNE to 7 
detect clusters of DCs that behave similarly across species, allowing for increased power within 8 
each cluster. In order to find DC clusters that are the most biologically relevant from among a large 9 
parameter space (after filtering solutions), we first filtered for the top five solutions with the 10 
highest degree of phylogenetic modular signal (Adams et al. 2016). From among those five, we 11 
chose the solution with the biggest differences in evolutionary rate among clusters, when fitted 12 
with a multivariate Brownian motion model. A detailed description of the filters and tests used to 13 
select the clusters is in the Methods. 14 

The resulting solution, with a perplexity of 245 and 16 clusters (Fig. 1C), was used for the 15 
remainder of the analysis. Cluster 14 had the highest evolutionary rate measured using the 16 
Brownian motion standard deviation parameter 𝜎2, with a value of 0.00347 bliss score2 per million 17 
years, while all the other clusters had rates ranging from 0.00021 to 0.00169 (Fig. 1D). Cluster 15 18 
had the second highest rate with a value of 0.00169 bliss score 2 per million years, and cluster 1 19 
had the third highest rate with a value of 0.00161 bliss score2 per million years. 20 

 21 

Synergistic DDIs have the shortest distance between network 22 

targets, followed by additive DCs and antagonistic DDIs 23 

We observed that highly synergistic DDIs across all species tend to occur when both drugs belong to 24 
the same chemical category and target the same cellular process, as can be seen from the 25 
accumulation of green bars for category and process across cluster 14 (Fig. 1C; in agreement with 26 
(Brochado et al. 2018). This motivated us to formally examine how DCs map onto molecular 27 
networks. We therefore leave discussion of DDI evolution for now, to first describe our mapping of 28 
the DC targets to known molecular networks, and how connectivity on these networks relates to 29 
combination type (antagonism, additivity, synergy); in the next section we will describe how rates of 30 
DDI evolution map onto combination types and network connectivity. We were able to identify 31 
protein targets for 39 of the 79 drugs tested by Brochado et al. (2018) (see Methods). These drugs 32 
had a total of 27 target proteins as identified by their unique protein IDs in E. coli. The most 33 
common target category was bacterial penicillin-binding protein, a group involved in the 34 
biosynthesis of bacterial cell walls. Other target categories mapped include ribosomal RNA, DNA 35 
polymerase, topoisomerase, thymidylate synthase, and mitochondrial glycerol-3-phosphate (Sup. 36 
Table S1).  37 

We then examined the E. coli DDI scores as a function of the connectivity of their targets. We used 38 
two E. coli networks: (1) a gold-standard co-functional gene pair network (Fig. 2A), and (2) a 39 
protein-protein interaction (PPI) network derived from small/medium scale studies (Fig. 2B), both 40 
hosted on EcoliNet (Kim et al. 2015). The co-functional network integrates probabilistic functional 41 
links, including shared GO and EcoCyc annotations, which signify molecular, metabolic, and 42 
biological process linkages or co-regulation among genes and their products. Each edge of the 43 
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network represents a shared functionality between gene pairs, reflecting their involvement in 1 
similar molecular or biological processes. The PPI network, compiled from curated databases, 2 
features high-confidence interactions between pairs of E. coli proteins. 3 

We measured the length of minimum distance paths between all drug targets in the networks. 4 
Targets of synergistic DCs have a significantly shorter minimum path length than antagonistic and 5 
additive DCs in both networks (Fig. 3A, B). This result is consistent with our expectations, given 6 
that synergistic DDIs tend to be more common between drugs that target the same cellular process 7 
and thus should be closer to each other in molecular networks (Brochado et al. 2018). We next 8 
examined K-edge connectivity, where two nodes are K-edge-connected if after removing k edges or 9 
less the nodes remain connected. For the co-functional network, K-edge connectivity is higher for 10 
targets of synergistic DCs than additive DCs (Wilcoxon p-value=0.0032), and higher for targets of 11 
additive DCs than antagonistic DCs (Wilcoxon p-value=0.014) (Fig. 3C), as expected if targets of 12 
synergistic DCs are closer together. There was no significant difference among combination types for 13 
the PPI network, although targets of synergistic and additive DCs do have significantly higher 14 
connectivity than a background set of non-targets (Fig. 3D). Overall, these results suggest that, the 15 
closer together and better connected two nodes are to each other, the more likely they are associated 16 
with a synergistic DDI. 17 

We also found that proteins in the co-functional network that are associated with synergistic DDIs 18 
are more central and better connected than nodes that are associated with other types of 19 
interactions. In the PPI network, nodes that are associated with any type of DC are more central 20 
and better connected than nodes that aren't targeted in our DC set, but don't differ by combination 21 
type. We arrived at these conclusions by examining three metrics (node degree, betweenness 22 
centrality, eigenvector centrality) that are characteristics of individual nodes (we averaged between 23 
the two target nodes in the DC). Average node degree (the number of connected edges) is 24 
significantly higher for targets of synergistic DCs than additive (Wilcoxon p-value=0.0024) or 25 
antagonistic DCs (Wilcoxon p-value=0.00018) in the co-functional network (Fig. 3E), but not in the 26 
PPI network (Fig. 3F). Average betweenness centrality (how much each node lies on the shortest 27 
paths between pairs of other nodes in the network) is higher for targets associated with synergistic 28 
DCs than with additive (Wilcoxon p-value=0.0015) or antagonistic DCs (Wilcoxon p-value=0.013) in 29 
the co-functional network (Fig. 3G), but not in the PPI network (Fig. 3H). Average eigenvector 30 
centrality (how much each node is connected to other important nodes in the network) was also 31 
higher for targets associated with synergistic DCs than with additive (Wilcoxon p-value=0.0002) or 32 
antagonistic DCs (Wilcoxon p-value=0.0005) in the co-functional network (Fig. 3I), but these 33 
differences were not significant in the PPI network (Fig. 3J). Together, these results suggest that 34 
network connectivity of a protein affects the likelihood that it will be associated with a DDI, as well 35 
as the type of DDI. 36 
 37 

Synergistic DDIs evolve faster than additive and antagonistic 38 

DDIs 39 

We return now to describing the evolutionary rates of DDI scores (Fig. 1D), as determined on a per-40 
cluster basis (via t-SNE, described above). Cluster 14, which had the highest evolutionary rate 41 
(𝜎2=0.00347), appears to be rich in synergies in E. coli and Salmonella, while Pseudomonas has more 42 
additive DCs in this cluster (Fig. 1B). In contrast, cluster 15, which was the second highest rate 43 
cluster (𝜎2=0.00169), appears to be rich in synergies in Pseudomonas while the DCs in E. coli and 44 
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Salmonella are primarily additive. The cluster with the third highest rate, cluster 1 (𝜎2=0.00161), 1 
contains highly antagonistic DDIs in all the species. These observations suggest that the 2 
evolutionary rate of DDI scores may vary as a function of the combination (DDI) type and network 3 
connectivity of their targets. To more formally investigate this, we examined how the rates vary 4 
based on the targets' connectivity (in E. coli) and type of interaction. None of the DCs are exclusively 5 
antagonistic across all strains and species, although we found all other combinations (i.e., additivity, 6 
synergy, additivity⟷antagonism, additivity⟷synergy, antagonism⟷synergy and 7 
additivity⟷antagonism⟷synergy, where the arrow indicates that some strains or species have one 8 
DDI type and other strains or species have another DDI type). 9 

Overall, synergistic DDIs and additive⟷synergistic DDIs have faster evolutionary rates than any 10 
other class (Fig. 4A; all possible group comparisons were significantly different from each other 11 
except additivity⟷antagonism⟷synergy vs. additivity⟷antagonism, and excluding 12 
antagonism⟷synergy, with only a single observation; see Sup. Table S2 for all statistical tests in 13 
Fig. 4; significant differences mentioned have p-value < 0.001 unless indicated). We also aggregated 14 
each target pair's DDI type as a simple sum of its DDI types across strains and species (+1 for 15 
synergies, 0 for additivities, -1 for antagonisms), and found again that more synergistic DDIs (sum ≤ 16 
-3) have faster evolutionary rates than additivities (3 > sum > -3) and antagonisms (sum ≥ 3) (Fig. 17 
4B). This result of higher evolutionary rates for synergistic DDIs is also true for the targets that are 18 
in both the PPI and co-functional networks described earlier (Fig. 4C; all categories are significantly 19 
different, except for additivities vs antagonisms in the PPI network). 20 

Furthermore, DCs whose targets are nearby in the network have the highest rate of DDI score 21 
evolution (Fig. 4D). This is consistent with the fact that cluster 14 has the highest rate (Fig. 1D), 22 
and contains a majority of synergies (Fig. 1C). This result of nearby targets having the highest DDI 23 
evolution rates is significant for both the PPI network (p-value=0.007) and the co-functional network 24 
(p-value=0.019). Our observation of higher rates of DDI evolution among the close nodes is 25 
consistent when using reference networks from other species: we repeated this analysis by mapping 26 
E. coli target proteins to their orthologs in other species, and found a similar result among networks 27 
from four corresponding strains (including E. coli, Pseudomonas and Salmonella) in comparative 28 
networks from the STRING database (Sup. Fig. S2). The evolutionary rate is also significantly 29 
faster when simply comparing DCs that target adjacent vs. non-adjacent targets in the E. coli PPI 30 
network (p-value=0.0049; Sup. Fig. S3B), and for the EcoCyc portion of the E. coli co-functional 31 
network (Sup. Fig. S3A), and when comparing connected vs. disconnected targets for this latter 32 
network (Sup. Fig. S3C). 33 

Protein pairs with the highest K-edge connectivity (>20) are targets of DCs with higher DDI score 34 
evolutionary rates in the co-functional network (but not the PPI network, where all targets have 35 
connectivities < 5; Sup. Fig. S3K). Interestingly, DCs that have evolved between additive and 36 
synergistic DDI types tend to have targets with greater connectivity, degree, and betweenness 37 
centrality values in the E. coli networks (Sup. Fig. S3E,F,G). Together, these results indicate that, 38 
as the distance and connectivity between two targets increase (as measured, for example, by their 39 
minimum connecting path length), the average evolutionary rate of the DDI scores decreases. We 40 
interpret this to mean that wiring between close nodes in molecular networks evolves faster than 41 
between distant nodes. 42 

 43 
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Discussion 1 

Overview 2 
We studied the evolution of drug-drug interaction scores as a proxy for studying the evolution of 3 
network topology. We found that the evolutionary rates of DDIs among gram-negative bacteria are 4 
initially high, lower at longer evolutionary distances, and plateau at the largest distances. This 5 
suggests that chemogenomic variation rapidly accumulates. This helps to explain the observation 6 
that therapeutic combination therapies are typically taxon specific; for example, in fungi very few 7 
combinations of antifungals act across species (Brown et al. 2014). 8 
 9 
We then mapped drugs with known targets to different molecular networks in E. coli K-12 and found 10 
that the targets of synergistic DDIs are closer in molecular networks than other types of DDIs, and 11 
that synergistic interactions have a higher evolutionary rate, suggesting that connectivity between 12 
nodes that are closer in molecular networks evolves at a faster rate than between more distant nodes. 13 

 14 

DDI evolution 15 

Examining pairwise distances of DDI scores between species, we observed a rapid accumulation of 16 
differences and overall dissimilarity in DDI responses among species. Indeed the DDI score 17 
distances curve appears saturated among distantly related species. The high rate of DDI evolution 18 
we observed is consistent with the observations from the source paper that most (~70%) drug 19 
interactions are species-specific, and about one fifth are strain-specific (Brochado et al. 2018). 20 
Indeed, it is now generally appreciated that some DDIs show substantial genetic variation 21 
(Roemhild et al. 2022). For instance, the interaction between the aminoglycoside tobramycin and 22 
different β-lactams can be either synergistic or additive across isolates of multidrug resistant 23 
Enterobacteriaceae (Fass 1982). Some interactions between drugs used for treating urinary tract 24 
infections are additive across E. coli isolates (50%, e.g. mecillinam and ciprofloxacin) or antagonistic 25 
across isolates (10%, mecillinam and nitrofurantoin), while two different combination types occur 26 
across isolates for other combinations (40%; e.g. mecillinam and trimethoprim) (Fatsis-Kavalopoulos 27 
et al. 2020). 28 

We also clustered DDIs by their similarity across strains and species and then evaluated the rate of 29 
evolution of these clusters under a Brownian motion model. This approach is analogous to methods 30 
used in geometric morphometrics, in which specimen landmarks are grouped to evaluate different 31 
features, and modularity tests are used to assess whether there are differences in the evolution rate 32 
of different regions of that organ (Smaers and Vanier 2019). Modularity among traits mirrors shared 33 
functional, genetic, and developmental pathways (Cheverud 1996). Here, the signal of high 34 
modularity among DDI clusters is a result of variance between clusters being greater than the 35 
variance within clusters. We observed that the distribution of synergies, additivities and 36 
antagonisms among clusters partially explains different rate estimates. Clusters with low rates are 37 
composed of mostly additive DDIs; however some of these low-rate estimates are caused by 38 
resistance to one or both antibiotics, and a low phylogenetic signal is expected when multiple strains 39 
are resistant (Michel et al. 2008). Importantly, low evolutionary rates can reflect two fundamentally 40 
different scenarios. The first is a scenario where a functional relationship between two drug targets 41 
is conserved across species and strains, likely under purifying selection. For instance, cluster 4 42 
contains many DCs that result in synergistic or slightly synergistic DDIs and are conserved across 43 
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all strains. A second scenario involves targets that do not interact functionally, resulting in 1 
consistently additive interactions across different biological contexts. These interactions represent 2 
"evolutionary indifference" where a lack of connectivity between nodes in the network, for example, 3 
may contribute to the apparent conservation. Our use of t-SNE clustering categorized DDIs into 4 
clusters based on both their interaction patterns and evolutionary rates, so that these two low-rate 5 
scenarios were separated into distinct clusters. In contrast to these low rate clusters, high rate 6 
clusters such as 14, 15, and 1 contain DCs with a combination of synergistic and additive DCs across 7 
strains, or else antagonistic and additive DCs across strains. This variability may reflect a complex 8 
interplay of evolutionary forces acting on the underlying network. 9 

Biological network inferences 10 

With these rate estimates and interaction patterns, we asked whether network-based metrics are 11 
correlated with DDI divergence, by linking a subset of DCs with their respective protein targets in 12 
E. coli co-functional (EcoCyc/GO-BP) and PPI networks. We hypothesize that the rate of evolution of 13 
a DDI reflects the evolution of underlying connections between the protein targets of the DC. 14 

We first made several observations about the E. coli DDI types and network connectivity: synergistic 15 
DDIs occur when the targets are closer in the network, while additive and antagonistic DDIs target, 16 
on average, more distant proteins (Fig. 3A, B). This result is not surprising given the fact that 17 
synergies are expected to be more prevalent in drug combinations that target the same pathway or 18 
that belong to the same chemical class (Cowen and Steinbach 2008; Yeh et al. 2009), however, we 19 
think this is the first time this pattern has been shown using network data. We also found that 20 
synergistic interactions are more prevalent among targets that are part of the same cellular process 21 
or functional category, while antagonisms can take place between targets that are in different parts 22 
of the cell (Yeh et al. 2006; Wang et al. 2012; Brochado et al. 2018). We further found that targets 23 
associated with synergistic DDIs have a higher node degree (for the co-functional network) and K-24 
edge connectivity than targets of DCs with additive or antagonistic DDIs (Fig. 3C-F). This result 25 
agrees with a previous study that reports on the positive contribution of node degree in synergy 26 
prediction (Liu et al. 2022). Average node betweenness and eigenvector centralities were also found 27 
to be more significant among targets of DCs with synergistic DDIs compared to additivities and 28 
antagonisms in the co-functional network (Fig. 3G-J). This result suggests that targets of DCs with 29 
synergistic DDIs tend to be “hubs” in the network (Li et al. 2011; Tilli et al. 2016), or that they are 30 
more central to different pathways than targets of DCs with antagonistic or additive DDIs. 31 

At large evolutionary scales, network rewiring rates appear to slow down (Shou et al. 2011); our 32 
DDI-based estimates also suggest a pattern of saturation of network divergence at the largest 33 
evolutionary distances (Fig. 1E). Beltrao and Serrano (2007) estimated a single rewiring rate among 34 
proteins that is faster than sequence evolution; here, we demonstrated that there is a distribution of 35 
evolutionary rates. We examined the rate of evolution of DDIs whose targets are closer in the PPI 36 
and co-functional networks and found that their rate of evolution is higher (Fig. 4D). This is 37 
correlated with our observation that synergies tend to occur when DC targets are closer in the PPI 38 
and co-functional networks (Fig. 3A,B) and have a high evolutionary rate (Fig. 4A,B,C). 39 
Accordingly, as the path length between targets increases (and for more antagonistic DDIs), the 40 
evolutionary rate decreases (Fig. 4C,D). Our results indicate that the rewiring rates of DDI scores 41 
are higher for drug targets that are nearby within biological networks, contrary to the initial 42 
expectation that more distant nodes would have greater flexibility for rewiring. We hypothesize 43 
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several mechanisms to explain these findings, including roles for epistasis, pathway topology, and 1 
pharmacodynamics. Proximity in biological networks often implies direct epistatic interactions 2 
(where the effect of one gene is directly influenced by another), which can be rapidly rewired through 3 
single mutational events (Phillips 2008). Conversely, targets that are functionally distant typically 4 
exhibit indirect epistasis, with multiple intervening genes that can buffer changes, thus requiring 5 
multiple mutations for effective rewiring (Wagner 2013). This buffering capacity reduces the 6 
likelihood of rapid change among distant targets in our DDI analysis.  7 

We found differences in rates are also associated with differences in interaction type. Indeed, 8 
interaction signs (synergistic, antagonistic) are influenced in complex ways by the local topology of 9 
the pathway, including whether the drug targets act in series or parallel. Modifications in drug 10 
effects (e.g. partial versus total inhibition) or pathway essentiality may swiftly convert an 11 
interaction from synergistic to antagonistic or vice versa. Such transformations are more feasible 12 
within tightly connected networks where targets share direct functional relationships (Yeh et al. 13 
2006). Another mechanism by which network proximity may determine rates of connectivity 14 
evolution is through the action of gene duplication, or segmental duplication affecting multiple genes 15 
in an operon. Such duplications may be particularly relevant in closely connected network nodes, 16 
where duplicated genes are likely to interact and undergo selective pressures together. For example, 17 
if gene duplication results in parallel pathways and selective drug resistance develops differently in 18 
these pathways, it can transform drug interaction dynamics from antagonism to synergy, as one 19 
pathway compensates for the inhibited function of the other (Díaz-Mejía et al. 2007; Hegreness et al. 20 
2008). This capability for rapid adaptation is less probable in distant nodes, which are typically part 21 
of separate functional systems, requiring more extensive genetic and regulatory changes to evolve 22 
new interactions and less likely to affect localized clusters of duplicated genes (Schmidt et al. 2003; 23 
Conant and Wolfe 2008). The functional and spatial proximity of these nodes within both the 24 
network and the genome promotes faster evolutionary rewiring, supporting observed patterns of 25 
network dynamics where close nodes exhibit more rapid evolutionary changes compared to more 26 
distantly connected nodes. Because the method that we are using relies on druggability of respective 27 
targets, pharmacokinetic effects of the network are also detected, and may vary as a function of 28 
distance between targets. For distant targets, interactions often manifest through altered 29 
pharmacokinetics (e.g., absorption, metabolism) rather than direct pathway interactions. Changes in 30 
one drug's metabolism can inadvertently affect the bioavailability of another, leading to 31 
modifications in DDI type (Roemhild et al. 2022). 32 

These mechanisms suggest why closer nodes might exhibit higher rates of evolutionary rewiring 33 
compared to more distant ones. Our findings are in line with the notion that synergistic interactions, 34 
which are predominantly found among closely linked targets, tend to accelerate the evolution of 35 
resistance, potentially driving faster network changes (Hegreness et al. 2008). While our use of DDIs 36 
to investigate network change opens up more questions than answers, a key attractive feature is 37 
that they highlight specific routes for future investigation of the mechanisms behind the putative 38 
network changes. 39 
 40 
An important extension of the work presented here involves leveraging available cross-species 41 
network data (e.g. STRING; Szklarczyk et al. 2023). Such analysis will facilitate direct comparison of 42 
network connectivity evolution from network data and drug combination data. Comparative network 43 
analyses are also important for evaluating the sensitivity of our observed relationships between DDI 44 
evolutionary rates and network connectivity to the species from which the reference network is 45 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae098/7676686 by H
ealth Sciences Library user on 21 M

ay 2024



 

11 

obtained. In a preliminary analysis, we examined STRING's PPI and comprehensive networks for 1 
four strains: E. coli strains K-12 (ebw) and IAI1 (ecr), Salmonella strain LT2 (stm), and Pseudomonas 2 
strain PAO1 (pae). All of these networks support our primary conclusion that DDI evolutionary rates 3 
decrease with increasing network distance (Sup. Fig. S2). Further work with comparative network 4 
analysis (e.g. De Domenico et al. 2015) will be crucial for advancing our understanding of how 5 
network topology evolution corresponds to evolution of drug-drug interactions. 6 

Our observation of differential evolutionary rates among drug interaction types suggests that 7 
different molecular pathways have different rewiring rates. Different processes (besides the drugs 8 
themselves) may be driving this pattern, for instance, positive selection on mutations that cause co -9 
expression or co-localization of components from different networks may result in novel connections 10 
between the previously disconnected pathways. Purifying selection against loss of function may also 11 
constrain the rewiring of the network.  12 

Beltrao and Serrano (2007) suggested that differences in rewiring rates between functional 13 
categories may be attributed to natural selection. In our DDI analyses, we found that there is 14 
variation in functional process annotations among the subset of known target proteins of drugs in 15 
clusters 2, 3, 4, 6 and 16 (Sup. Fig. S4). These clusters all showed enrichment for anion binding 16 
(GO:0043168) and small molecule binding (GO:0036094), while clusters 3, 6 and 16 are also enriched 17 
for ion binding (GO:0043167). These results suggest that differences in rates of DDI evolution may 18 
be partially explained by differences in natural selection acting on different underlying network 19 
components. However, next, we highlight a different type of bias in DDI data that may contribute to 20 
our observed signal and cause difficulty in the interpretation of DDI data. 21 

 22 

Network vs. resistance evolution 23 
Another important explanation for our observed signal (high evolutionary rate of synergistic, well -24 
connected targets) lies in the fact that some strains are resistant to particular antibiotics. We 25 
suspect that some changes in DDIs that we correlated with changes in network structure are 26 
actually caused by changes in resistance to one or both drugs, rather than changes in the drug 27 
interaction term itself. Changes in resistance are likely based on structural changes in either target 28 
proteins, or other resistance mechanisms. These other resistance mechanisms include transporter 29 
proteins or cell membrane permeability characteristics, which affect cross-resistance and collateral 30 
sensitivity, and don't represent the types of molecular network changes that we hoped to measure 31 
with the DDI. Indeed, there is genetic variation in how drug interactions are affected by the order in 32 
which drug combinations are administered, suggesting hysteresis (Roemhild et al. 2022). Note that 33 
Brochado et al. (2018) reported any strain with fitness values (e.g., ratio of drug/non-drug treated 34 
growth) of >0.7 as being resistant to that drug. However, some drugs that are known to be clinically 35 
bacteriostatic (inhibit growth) fall in this range, and strains are reported to be resistant; e.g. see the 36 
case of sulfamonomethoxine resistance in all species and strains, below. Indeed, Bushby (1973) 37 
reported "resistance to one of the drugs as measured by conventional tests may not abolish synergy." 38 
To consider the effect of resistance differences on our results, we repeated the entire analysis 39 
filtering for DDIs that are "susceptible" (fitness < 0.7) in at least one of the species for both drugs, 40 
assuming that this decreases the proportion of true resistance cases in the dataset. This set included 41 
1127/2655 DCs (42.2% of the total DCs). Our results for this smaller set are consistent with the full 42 
dataset (Sup. Figs. S5-S7). A minor difference in the subset is that antagonisms have a slightly 43 
lower (instead of equivalent) rate than additivities. Although this consistency between the full and 44 
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reduced dataset is desirable, it doesn’t remove the possibility that differences in resistance among 1 
strains are a substantial part of the evolutionary signal. 2 
 3 
We used DDIs to learn about the evolution of networks, so discussion of some of the individual DDIs 4 
illustrate strengths and limitations of the approach. The evolutionary and network parameters also 5 
provide some insight into how and why individual DDIs with clinical relevance may vary across 6 
species. Next, we discuss these aspects of the interaction between A22 and novobiocin, and 7 
sulfamonomethoxine and trimethoprim or erythromycin. 8 
 9 

A22 and novobiocin 10 
The DDI between A22 and novobiocin is a case example (Sup. Table S3). Briefly, A22 binds the 11 
ATP-binding domain of MreB (eco:b3251) (Bean et al. 2009), the actin homolog in prokaryotes, while 12 
novobiocin binds gyrase subunit B (gyrB, eco:b3699) and topoisomerase IV (parC, eco:b3019), which 13 
are two type II topoisomerases involved in DNA unwinding and DNA duplication (Gellert et al. 14 
1976; Hardy and Cozzarelli 2003). MreB and ParC are known to physically interact (Madabhushi 15 
and Marians 2009) and are required for chromosome segregation (Huang et al. 1998). A22 and 16 
novobiocin have previously been reported to be synergistic in E. coli and P. aeruginosa (Taylor 2011; 17 
Taylor et al. 2012); however, in the dataset from Brochado et al. (2018), the combination type is 18 
variable within species. Both E. coli strains are susceptible to both drugs, but they have different 19 
interaction terms: one is additive, the other synergistic. Salmonella also shows intraspecific 20 
differences, where one of the strains is synergistic and the other additive, although in this case, the 21 
synergistic strain is resistant to novobiocin, with a fitness of 0.85. Both Pseudomonas strains are 22 
resistant to novobiocin, with fitnesses greater than 0.86, and they have additive DDIs. This high 23 
variability of DDI type within species resulted in an evolutionary rate of 0.008 bliss 2/MYA for this 24 
DC, within the cluster with the highest evolutionary rate. The distance between these targets in the 25 
co-functional (EcoCyc/GO-BP) network was 2, and in the DDI network the distance between targets 26 
was 4. Why are the rates so high among strains, for this DDI? Strain-specific network predictions at 27 
STRING (Szklarczyk et al. 2023) suggest strain-specific differences in local network content. Of the 28 
genes all connected to each other in the local network (mreB, gyrA, parC, gyrB), parC is missing in 29 
three strains, while a fourth strain has reduced connectivity for MreB (only connected to gyrB). This 30 
type of gene content variation suggests the type of intraspecific network variation that may lead to 31 
high observed rates of DDI evolution. 32 
 33 

Sulfamonomethoxine and trimethoprim or erythromycin 34 
Another illustrative example of a known DDI used in the clinic and found in our data is the 35 
combination of sulfamonomethoxine and trimethoprim (Sup. Table S3) (Bushby 1973). These drugs 36 
inhibit successive steps in the synthesis of tetrahydrofolic acid synthesis, necessary for the 37 
biosynthesis of amino acids, purines, and thymidine. Sulfamonomethoxine competes against the 38 
enzymatic substrate of dihydropteroate synthase (folP, eco:b3177); this blocks the production of 39 
dihydrofolic acid, which in turn is a substrate for dihydrofolate reductase. Trimethoprim inhibits 40 
dihydrofolate reductase (folA, eco:b0048) by competing against the substrate for the binding site of 41 
the enzyme. Even on its own, trimethoprim can contribute to "thymineless death" (Then and 42 
Angehrn 1973); but while the effect of each drug on its own is bacteriostatic (prevents growth; 43 
Ocampo et al. 2014), when used in combination, the combined effect is bactericidal (kills bacteria). 44 
This is the cause of the strong synergistic effect between the two drugs (Bushby 1973; Ocampo et al. 45 
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2014). 1 
 2 
We measured an evolutionary rate of 0.008 bliss2/MYA for this DDI, as it belongs to the cluster with 3 
the highest evolutionary rate. This rate can be explained by the difference in DDI type between 4 
Pseudomonas and non-Pseudomonas strains. In the data used in our study, the interaction was 5 
synergistic for E. coli and S. enterica, but additive in Pseudomonas. The DDI may be additive in 6 
Pseudomonas because it is resistant to both drugs, due to differences in its permeability to the drugs 7 
and the presence of efflux pumps that remove the drugs (Eliopoulos and Huovinen 2001). In 8 
contrast, E. coli and S. enterica were only resistant to a single drug, sulfamonomethoxine. 9 
 10 
Our goal in using the sulfamonomethoxine and trimethoprim DDIs to study the network, in this 11 
case, was to capture the rate of evolution of the folate biosynthesis pathway across species. The fact 12 
that the two targets act as successive steps in all studied species suggests several possible causes for 13 
this observed rate. There are some differences in the presence of pathways components that are 14 
peripheral to these steps (Pribat et al. 2010), and it is possible that such differences in the network 15 
beyond the direct connection contribute to DDI differences. Indeed, beyond their direct link in the 16 
co-functional (EcoCyc/GO-BP) network, the targets are highly connected to each other, with a K-17 
edge connectivity of 21 (68% quantile), meaning that 21 edges have to be removed to disconnect the 18 
two targets. It is also possible that there are differences in the direct target enzymes and their 19 
connectivity (e.g., concentration, kmax). An alternative explanation is resistance: resistance to 20 
sulfamonomethoxine and trimethoprim was detected soon after they were introduced in clinical 21 
treatments. Several point mutations have been described in the target genes across different 22 
bacteria, and the most common mechanism of resistance is due to the bacteria having an extra copy 23 
of the target gene (Estrada et al. 2016). All of this suggests that, for sulfamonomethoxine and 24 
trimethoprim, evolution of the DDI is the result of many types of biological differences, not just 25 
specific differences in network interactions between the drug targets. This is an important 26 
limitation to the DDI approach to studying network evolution. 27 
 28 
Trimethoprim also interacts with erythromycin, a macrolide that inhibits protein synthesis and has 29 
a bacteriostatic effect. This interaction is additive in E. coli, but when sulfate is added to the media 30 
the combination type becomes suppressive (a type of antagonistic interaction) (Qi et al. 2021). 31 
Trimethoprim may cause sulfur limitation resulting in changes in expression of sulfur reduction 32 
genes. Interestingly, this suppressive effect is dependent on the gene crl, and a crl knockout strain 33 
eliminates the suppressive response entirely. This is therefore a clearly demonstrated case of genetic 34 
variation affecting a DDI. Because Pseudomonas doesn’t have crl (Cavaliere et al. 2015) we might 35 
have expected to see a high rate of DDI evolution; however Brochado et al. (2018) did not add sulfate 36 
to the growth media, and thus the interaction between trimethoprim and erythromycin is additive 37 
across all species and in a cluster with one of the lowest evolutionary rates (0.0003 bliss 2/MYA). We 38 
predict that, in the presence of sulfate, the rate of this DDI would be much higher (suppressive in 39 
non-Pseudomonas strains, and additive in Pseudomonas), illustrating a case of DDI evolution as a 40 
result of network evolution, as well as a strong dependence on environmental conditions. 41 

Conclusions 42 

Here, we introduce a novel framework to compare evolutionary rates across entire networks. We 43 
examined changes in DC effects among strains and species, and compared these rates of change with 44 
the DDI types and, when possible, network topology of the drugs' targets. This approach has some 45 
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advantages over direct network analyses, such as increasing the number of species under study, 1 
without the need of obtaining the underlying network in each species. DDIs can be quantified using 2 
high-throughput experiments across different species and strains, and are phenotypic quantitative 3 
traits that can be modeled in a phylogenetic comparative framework, allowing for an independent 4 
measurement of evolutionary rates between nodes in the network. An important limitation of our 5 
approach is that evolution of resistance to a drug may obscure underlying network-based effects. 6 
Still, our approach suggests a general picture of network evolution, where close nodes in the 7 
network (which tend to respond synergistically in response to targeting both at once) evolve at faster 8 
rates than more distant nodes. 9 
 10 

Materials and Methods 11 

DDI scores, strain susceptibility, and combination types 12 
We obtained DDI scores (Bliss scores) from a previous study (Brochado et al. 2018) that assessed 13 
2655 combinations (after removing 228 DDIs with missing data) of 79 different compounds on six 14 
strains of three species of gram-negative bacteria: Escherichia coli K-12 BW2952 (ebw), E. coli O8 15 
IAI1 (ecr), Salmonella enterica subsp. enterica serovar Typhimurium 14028S (seo), S. enterica subsp. 16 
enterica serovar Typhimurium LT2 (stm), Pseudomonas aeruginosa PAO1 (pae), P. aeruginosa 17 
UCBPP-PA14 (pau). We used the following datasets from Brochado (2018): interaction scores from 18 
table ED09C as input for our phylogenetic comparative analysis, strain susceptibility to antibiotics 19 
from Sup. Table 1 (used for our Sup. Figs. S5-S7), and the categories that DDIs belong to from Sup. 20 
Table 2. 21 
 22 

Divergence time estimates 23 
We obtained concatenated alignments of 27 highly conserved protein sequences for the six strains 24 
using PhySpeTree (Fang et al. 2019). We simultaneously estimated the phylogeny and divergence 25 
times in BEAST2 (Bouckaert et al., 2014) using the following approach: We employed one partition 26 
for each protein, with linked trees/clocks. A Yule tree model was used in conjunction with an 27 
optimized relaxed molecular clock. The following priors were used for calibrating node time 28 
estimates: For the divergence time between E. coli and S. enterica, 100-160 MYA (Vernikos et al. 29 
2007; Meysman et al. 2013; Knöppel et al. 2018). The divergence time between these species and P. 30 
aeruginosa occurred within the range of 1350.0 to 1527.7 million years ago (Battistuzzi et al. 2004; 31 
Blair Hedges and Kumar 2009; Marin et al. 2017). The Markov chain Monte Carlo analysis was run 32 
for 20 million iterations. 33 
 34 

Clustering DDIs using t-SNE 35 

To reduce data dimensionality of the DDI trait space, we classified DDIs into clusters using t -SNE 36 
in the R packages bigMap (Garriga and Bartumeus 2018) and bigmemory (Kane et al. 2013) with 37 
parameters: 80 threads, 80 layers, and 9 rounds. DDIs that were similar to each other across strains 38 
were clustered together. The t-SNE analyses were performed for a range of 251 perplexity values 39 
between 5 and 2505 (Sup. Doc. S1). The clustering output was evaluated based on the stability and 40 
plateauing of cost and effect size, and the variance between threads. We obtained stable solutions 41 
between perplexity values 175 and 1455. The pakde algorithm was applied with a perplexity of 1/3 42 
the respective t-SNE perplexity. To find which of the clustering solutions was the most modular, we 43 
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tested for modularity in the data using the function phylo.modularity within the R package 1 
geomorph (Adams et al. 2016) The five most modular clustering patterns were selected with the 2 
most negative ZCR coefficients. These clustering patterns had the following perplexity values: 355, 3 
245, 275, 215, and 345; and the following number of clusters: 9, 16, 14, 18, and 12. All five clustering 4 
patterns had a strong modular signal, with multivariate effect sizes under -26.6, p-value=0.001 and 5 
covariance ratios below 0.91. Lastly, we fitted a multivariate Brownian motion model to each of 6 
these 5 clustering patterns and calculated the evolutionary rates per cluster using 7 
compare.multi.evol.rates, also using the R package geomorph (Adams et al. 2016). Out of the 5 most 8 
modular clustering models, the model with a perplexity of 245 was the one with a higher Z effect in 9 
the test, showing the biggest differences between groups. Thus, this clustering pattern was used in 10 
the following steps. In addition, the sigma rates calculated for each of the clusters were used as 11 
approximations for DDI evolutionary rates that are part of that cluster. 12 
 13 

Identification of drug targets and their molecular networks 14 

Each drug was identified with unique Pubchem and CHEMBL IDs using webchem (Szöcs et al. 15 
2020), which were then used to retrieve their mode of action from IUPHAR (Armstrong et al. 2019). 16 
We also compared our targets to a previously published dataset on drugs and drug targets (Santos et 17 
al. 2017), identified unique Uniprot IDs and KO IDs for each target protein, and converted these IDs 18 
into E. coli Uniprot IDs using the KEGG Orthology (Kanehisa and Goto 2000). We didn’t include 19 
drugs whose mode of action was unknown, or that had non-protein molecules as targets, such as 20 
small molecules, RNA, or DNA. 21 

Two molecular networks of E. coli were downloaded from EcoliNet 22 
(https://www.inetbio.org/ecolinet/downloadnetwork.php) (Kim et al. 2015), small/medium-scale 23 
protein-protein interactions (LC; 764 genes, 1073 links) and the gold-standard co-functional gene 24 
pair network of E. coli derived from EcoCyc and GO-BP (1835 genes, 10804 links). Comparative 25 
networks were also downloaded from the STRING database (Szklarczyk et al. 2023) for Escherichia 26 
coli K-12 BW2952 (ebw), E. coli O8 IAI1 (ecr), S. enterica subsp. enterica serovar Typhimurium LT2 27 
(stm), Pseudomonas aeruginosa PAO1 (pae), filtered for interactions with a 70% score or higher, and 28 
mapped to our DDI data via KEGG ortholog IDs. 29 
 30 

Inter-node network metrics 31 

For each of the networks, we calculated the average path length and node degree distributions. In 32 
addition, the minimum distance between each of the nodes in the network was calculated, as well 33 
as the node degree (number of connections per node), the K-edge connectivity between each pair of 34 
nodes (i.e. the minimum number of edges that can be removed to disconnect the nodes), 35 
betweenness centrality (i.e. a measure of centrality in the network based on shortest paths) and 36 
eigenvector centrality (i.e. a measure of the influence of the node in the network). We used the R 37 
package igraph (Csardi et al. 2006) to calculate these values in each one of the molecular networks 38 
and for each node or pair of nodes. We also generated an adjacency matrix, which contains 39 
information on whether two nodes are connected directly by an edge or not. In addition, we used K-40 
edge connectivity as a proxy for connectedness between proteins (i.e., a pair with K-edge 41 
connectivity equal to zero is disconnected, and proteins with K-edge connectivity different than zero 42 
are connected). 43 
 44 
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Enrichment analysis per cluster 1 

Differential gene set enrichment analysis was performed across the subset of DDIs with known 2 
target proteins for each cluster using the R package clusterProfiler ver 4.10.0 (Yu et al. 2012) and 3 
org.EcK12.eg.db. The background set included only the known targets. In many cases, drugs from 4 
different clusters target the same protein. 5 

 6 

Data and code availability 7 

The code used for data analysis is available from: https://github.com/Alexggo/ddi-netevo 8 

 9 
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Figure Legends 8 

Figure 1: Drug-drug interaction (DDI) score distance diverges non-linearly over time. Species and 9 
strain abbreviations are shown in the top left box. A. Bayesian phylogeny and divergence time 10 
estimates based on an alignment of 27 highly conserved protein sequences. B. Hierarchical 11 
clustering of strains based on average Euclidean distances across DDIs (i.e. "DDI score distance" ); 12 
drug combination (DC) data is from Brochado et al. (2018). C. Heatmap of DDI scores across 13 
strains. Along top, hierarchical clustering of DCs is shown based on Euclidean distances across 14 
strains, but these clusters were constrained by t-SNE cluster membership (see text). In the 15 
heatmap, synergistic interactions are blue (close to -1), antagonistic interactions are red (close to 1), 16 
and additivities are white (close to 0; measured in Bliss score units). The bars below indicate 17 
whether the two drugs involved in the interaction are the same (green) or different (black) in terms 18 
of: belonging to the same drug category, targeting the same cellular process, or having the same 19 
use. D. Evolutionary rate of DDI score change, calculated for each cluster. E. Pairwise DDI score 20 
distances between strains as a function of divergence time between strains. Intraspecific 21 
comparisons, comparisons between Salmonella and Escherichia, and comparisons with 22 
Pseudomonas are each labeled. F. First two axes of a phylomorphospace-PCA for the DDI score 23 
data. The percent of variance explained for principal components 1 and 2 are shown.  24 

 25 

Figure 2: A. Graphical representations of the co-functional gene pair network of E. coli (EcoliNet: 26 
EcoCyc/GO-BP). This network contains 1835 nodes with an average path length of 4.8 and contains 27 
20 proteins targeted by 36 drugs in our analysis. B. Graphical representations of the PPI network of 28 
E. coli, as determined by small and medium-scale experiments (EcoliNet: LC. Small/medium-scale 29 
PPI). This network contains 764 nodes with an average path length of 4.9, with 18 proteins targeted 30 
by 27 drugs in our analysis. In A and B, each node represents a unique protein (KEGG ID) in E. 31 
coli; the red nodes are target proteins identified as participating in DCs in our analysis. 32 

 33 

Figure 3: Pairs of protein targets with synergistic drug-drug interactions (DDIs) have lower path 34 
length and higher connectivity and centrality measures in E. coli co-functional (A,C,E,G,I) and 35 
protein-protein interaction (B,D,F,H,J) networks. DDI types examined are synergies, additivities, 36 
and antagonisms ( "non-targets" are a background sample of non-drug target proteins in the 37 
network). The number of interactions in each category is in parentheses. Network metrics are: A-38 
B: path length between two targets, C-D: K-edge connectivity between two targets, E-F: mean 39 
node degree of the two targets, G-H: mean betweenness centrality of the two targets, I-J: mean 40 
eigenvector centrality of the two targets. In all plots, significance of Wilcoxon test p -values are 41 
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given for differences in the mean between all pairwise comparisons: p-value < *0.05, **0.0001, 1 
***0.00001. For all plots, Kruskal−Wallis test for difference among groups is p < 1x10−7. 2 

 3 

Figure 4: Evolutionary rates of DDI scores as a function of DDI type and network connectivity of 4 
targets. A. DCs resulting in only synergy or synergy⟷antagonism DDIs across strains have faster 5 
evolutionary rates. B. Aggregated interaction types reveal that more synergistic DCs have higher 6 
evolutionary rates. The X-axis value is the sum, per DC, across strains, where DDIs are scored as -7 
1 for synergies, 0 for additive, and +1 for antagonistic interactions. C. Rate of DDI evolution as a 8 
function of DDI type, for DCs with protein targets in the co-functional and small/medium scale PPI 9 
networks. Synergistic DCs have higher evolutionary rates than additive and antagonistic DCs 10 
(combination types and networks from E. coli). D. Rate of DDI evolution as a function of the 11 
minimum distance between DC target proteins reveals that wiring between close nodes in 12 
molecular networks evolves more quickly than between distant nodes. See Sup. Table S2 for 13 
statistical tests for differences among groups shown here. For all plots, the error bars represent the 14 
standard error of the mean. 15 
  16 
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